主頁 > 百科知識 > 一元二次方程公式法的方法與技巧

一元二次方程公式法的方法與技巧

時間:2025-02-13 23:59:01 瀏覽量:

1.開平方法

形如(X-m)2=n (n≥0)一元二次方程可以直接開平方法求得解為X=m±√n。

①等號左邊是一個數(shù)的平方的形式而等號右邊是一個常數(shù)。

②降次的實質(zhì)是由一個一元二次方程轉(zhuǎn)化為兩個一元一次方程。

③方法是根據(jù)平方根的意義開平方。

2.配方法

用配方法解一元二次方程的步驟:

①把原方程化為一般形式;

②方程兩邊同除以二次項系數(shù),使二次項系數(shù)為1,并把常數(shù)項移到方程右邊;

③方程兩邊同時加上一次項系數(shù)一半的平方;

④把左邊配成一個完全平方式,右邊化為一個常數(shù);

⑤進(jìn)一步通過直接開平方法求出方程的解,如果右邊是非負(fù)數(shù),則方程有兩個實根;如果右邊是一個負(fù)數(shù),則方程有一對共軛虛根。

3.因式分解法

是利用因式分解的手段,求出方程的解的方法,是解一元二次方程最常用的方法。

分解因式法的步驟:

①移項,將方程右邊化為(0);

②再把左邊運用因式分解法化為兩個(一)次因式的積;

③分別令每個因式等于零,得到(一元一次方程組);

④分別解這兩個(一元一次方程),得到方程的解。

4.求根公式法

用求根公式法解一元二次方程的一般步驟為:

①把方程化成一般形式aX2+bX+c=0,確定a,b,c的值(注意符號);

②求出判別式△=b2-4ac的值,判斷根的情況.

若△<0原方程無實根;若△>0,X=((-b)±√(△))/(2a)

5.圖像法

一元二次方程ax2+bx+c=0的根的幾何意義是二次函數(shù)y=ax2+bx+c的圖像(為一條拋物線)與x軸交點的x坐標(biāo)。

當(dāng)△>0時,則該函數(shù)與x軸相交(有兩個交點)。

當(dāng)△=0時,則該函數(shù)與x軸相切(有且僅有一個交點)。

當(dāng)△<0時,則該函數(shù)與軸x相離(沒有交點)。

© 轉(zhuǎn)乾企業(yè)管理-上海店鋪裝修報建公司 版權(quán)所有 | 黔ICP備2023009682號

免責(zé)聲明:本站內(nèi)容僅用于學(xué)習(xí)參考,信息和圖片素材來源于互聯(lián)網(wǎng),如內(nèi)容侵權(quán)與違規(guī),請聯(lián)系我們進(jìn)行刪除,我們將在三個工作日內(nèi)處理。聯(lián)系郵箱:303555158#QQ.COM (把#換成@)