發(fā)布時(shí)間:2025-09-30 05:12:27 瀏覽次數(shù):3
概率公式
P(A)=構(gòu)成事件A樣本數(shù)目整個(gè)樣本空間S的樣本數(shù)目
公理1:0≤P(A)≤1既P(A)是一個(gè)0到1之間的非負(fù)實(shí)數(shù)。
公理2:P(S)=1整個(gè)樣本空間的概率值為1。
公理3:P(A?B)=P(A)+P(B)如果AB互斥。
定理1:(互補(bǔ)法則):P(Aˉˉˉˉ)=1?P(A)
定理2:P(?)=0
定理3:P(A1?A2…?An)=∑nj=1P(Aj)
定理4:P(A?B)=P(A)?P(A?B)(P(A?B)A?B,也就是AB是差集關(guān)系)
定理5:P(A?B)=P(A)+P(B)?P(A?B)
定理6:P(A?B)=P(A)×P(B|A)=P(B)×P(A|B)(P(B|A)表示在B發(fā)生的情況下發(fā)生A的概率)
定理7:P(A?B)=P(A)×P(B)
貝葉斯公式:P(A|B)=P(B|A)×P(A)P(B)
全概率公式:P(B)=∑ni=1P(Ai)×P(B|Ai)
期望:E(x)=∑ni=1P(xi)×xi。